我院郭光灿院士团队史保森、丁冬生课题组在冷里德堡原子气体中观测到多体相互作用诱导的奇异点与迟滞轨迹,揭示了非厄米多体物理中的电荷宇称对称性破缺现象。相关成果4月13日以“Exceptional point and hysteresis trajectories in cold Rydberg atomic gases”为题发表在国际知名学术期刊《Nature Communications》上。
电荷宇称对称性是粒子物理学中一种重要的离散对称性。当某些物理过程在电荷宇称变换下表现不对称时,即称为电荷宇称对称性破缺,比如:中性K介子(K⁰)衰变和B介子衰变等。研究电荷宇称对称性破缺有利于理解自然界中的物质-反物质不对称性机制,以及发现超越标准模型所预测电荷宇称破缺源。里德堡原子凭借其巨大的电偶极矩和优异的量子相干特性,为模拟和研究对称性破缺现象提供了理想的量子多体系统平台。值得注意的是,里德堡原子间的长程相互作用可以诱导额外的量子耗散通道,这使得在实验上构建可控的多体非厄米量子系统成为可能,为研究奇异点及其相关非平衡动力学行为开辟了新途径。丁冬生等人在冷里德堡原子系统中利用多体相互作用构建了非厄米模型,发现了电荷宇称对称性破缺现象,观察了非厄米性导致的迟滞轨迹,如图1所示:
图 1 :物理模型图。(a)为双光子激发能级示意图。(b)为实验装置示意图,里德堡原子间相互作用会引起额外的耗散从而引起非厄米效应。(c)为通过正向和反向扫描探测光光强,系统的透射信号呈现出明显的迟滞轨迹,进一步揭示了非厄米动力学特性。
研究人员通过实验测量不同探测光强下的原子响应,成功观察到里德堡原子间多体相互作用诱导的二阶奇异点,如图2所示。理论分析表明,系统的哈密顿量具有电荷宇称对称性,且该对称性在奇异点处发生破缺。此外,理论分析揭示了系统中三阶奇异点的存在,这些高阶奇异点在精密测量领域展现出重要的应用前景。在这样的系统中,里德堡原子的状态不仅受到外部输入的影响,而且还受它们以前的状态所限制。因此,在激光功率不同的扫描方向上,系统的动力学演化完全不同,从而产生了迟滞回线。该工作还研究了不同原子密度情况下扫描时间对迟滞效应的影响,揭示了不同时间尺度下的非厄米响应特性,如图3所示。
图2:实验测量的相图。(a)为原子响应谱随探测光强度的变化关系,透射峰的分裂表明系统经历了奇异点;红色点表明透射峰的偏移。(b)–(e)为不同探测光强下测得的原子响应谱,展现了奇异点附近的光谱特征。
图3:迟滞动力学。(a)为不同原子密度情况下迟滞环的面积与扫描时间的关系。(b)–(e)为不同实验条件下的迟滞轨迹。
该工作架起了非厄米多体量子物理与粒子物理电荷宇称问题之间的桥梁,为理解宇宙物质起源、标准模型的局限性以及探索新物理提供了新的思路。该工作得到了审稿人的高度评价:该稿件尤其清晰地展现了以下重要性:(i) 他们构建了一个高度可控的里德堡原子实验系统,并通过相互作用实现了奇异点的调控;(ii) 该系统中高阶奇异点的存在在理论上得到了证实。(“In particular,themanuscript clearly presents the significance: (i) they implemented a set up of Rydberg atoms which is highly controllable and host exceptional points with interactions (ii) The emergence of higher-order exceptional points is theoretically confirmed in this system.”)
中国科大博士研究生张俊和王雅君,以及博士后李恩泽为本文的共同第一作者,丁冬生教授为本文的独立通讯作者。该成果得到了科技部、基金委、中国科学院、安徽省重大科技专项以及中国科学技术大学的资助。
文章链接:https://www.nature.com/articles/s41467-025-58850-y
(量子网络安徽省重点实验室、物理学院、中国科学院量子信息和量子科技创新研究院、科研部)